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Abstract

We discuss interferometric detection of gravitational waves using multiple bounce parallel-hca~l) systemns.
The design we consider alows us to remove the laser frequency fluctuations , and gives a remaining non-zero
gravitational wave signal. The resultant sensitivity, however, is about B times smaller than the sensitivity

of a two-arin Michelson interferomcter operating with 1 reflections. A space-based version of our design,
sensitive to kilohertz radiation and with an armn length of about 100 kin, would require only one refiection.

T'his would make it as sensitive as a right-angled one-bounce Michelson interferometer of siilar arm length.

PACS numbers: 04.80.N, 9555.Y, and 07.60.1,



I Introduction

Non-resonant detectors of gravitational radiation (with frequency content 0 < f < fy) arc essentially inter-
ferometers with one or more armns, in which a coherent train of electrom agnet ic waves (of nomninal frequency
vy >> fp) IS folded into several beams, and a points where these interseet relative fluct nations of frequency
or phase are monitored (homodyne detection). ¥requency fluetrlatiol]s ina narrow band can alternatively be
deseribed as fluctuating sideband amplitudes, and interference of two or more bearns, produced and mon.-
itored by a (nonlinear) device such as a photodetector, exhibits these sidebandsas a low frequency signal
againwith frequency content O < f < fo-T'hic observed low frequency signal is due to frequency Variations of
the source of the beans about 1o, to relative motions of the source and the mirrors (or amplifying transpon-
ders) that do the folding, to temporal variations of the index of refraction along the beams, and, according
to general relativity, to any time-variab le gravitational ficlds present, such as the transverse traceless metric
curvaturcof a passing plane gravitational wave train. To observe these gravitational ficldsinthis way, it is
thus necessary to control, or inonitor, the other sources of relative frequency fluctuations, and, inthe data
analysis, to optionaly use algorithins based 011 the different characteristic interferometer responses to gravi-
tational waves (the signal) and to the other sources (the noise). Several feasibility studies [1-4] have shown
that this can presently be done to astrophysically interesting thresholds for both ground and sl)acc-based
instruments.

The frequency bandin whit.11 a ground-bascdinterferometer canbe made most sensitive to gravitational
waves [2] ranges from about ten Hertz to about a fow kiloHertz, with arm lengths ranging fromn afcw tens
of mcters to a few kilometers. Spat.c-basccl interferometers, such as the coherent inicrowave tracking of
interplanetary spacecraft [3] and proposed Michelson optical interferometers in planctary orbits [4] arc most
sensitive to millillertz gravitational waves, with arin lengths ranging from 10°to 10% kilomcters.

in present single-spacecraft Doppler tracking observations, inany of the noise sources canbe cither reduced
or calibrated by irnplementing appropriate microwave frequency links and by using specialized hardware, so
the fundamental limitation is iimposed by the frequency (time-keeping) fluetuat.iorls inherent to the reference
clocks that control the microwave system. Hydrogen maser clocks, currently used in Doppler tracking exper-
iments, achicve their best performance at shout 1000 sccouds integration time, with a fractional frequency

stability of afcw parts in 18%7This is the rcason why these one-arm interferometers arc most sensitive to



millillertz gravitational waves. 'T'hisintegration tiine is aso comparable to the storage timel./e for space-
craft en route to the outer solar systemn (1 & 3AU), so these interferometers have year-optimum response to
gravitational radiation.

By comparing phases of split beamns PTop agated along non -p arallel anns [2,4,8,11], source frequency
fluctuations can be removed and gravitational wave signalsat lower levels canin principle be detected.
Fspecially for interferometers that usc light generated by presently available lasers, which have frequency
stability roughly a few parts in 1071 it is essentialto be able to remove these fluctuations when searching
for gravitational waves of dimensionless amnplitude less than 107 % in the millillertz band [4], downto
10721-107 %3 desired inthe kiloHertz frequency band [2]

The usual way of operating an interferometer implies, however, that the frequency side bands induced
by @ gravitational wave vanish when the arms of the interferor peter are parallel. 1t is interesting therefore
to consider whether there exist allernative ways of making mcasurcinents with an interferometer of parallel
beamns. This would be app licable, for instance, to situations inwhich site constraints would allow the
construction of only one long vacuum pipe [5]. The possibility of implementing an interferometer detector
with only one arm would also inply that orthogonal-arm vacuumn installations wounld actually be capable of
generating two strcam o f data, from independent one-arn systems. ‘This would provide both redundancy in
the data analysis and uscful extra directional information about the signal. In this paper we address this
problem, and as an example propose a particular design for a mnultiple bounce one-arm interferometer, in
which offset beams arc driven by the same laser light.

I Section 11 we deduce fromn first principles the response function of a single-ar~n folded beam to a plane
gravitational wave train. 11 the long wavelength limit (arin length << gravitational wavelength) the usual
expression for the phase shift of a many bounce systemn [6] is recovered. In Section 11, after describing our
proposed design of a one-arm interferometer, wc deduce its response function to aplane gravitational wave
train. The data from such aninterferometer give a non-zero gravitational wave signal, and aremaining laser
phase noise of maguitude sialler than the signal, although the usual advantage of havinginany bounces is
lost. Qurmnethod aso relics on the capability of independently mecasuring the lengihs of the armns;in Scetion
IV wc deduce an analytic expression for the necessary precision. For presently available lasers, in order to
reduce their noise to alevel of 10--2], the corresponding relative precision in arm length must be less than

108, whichshouldbeachievable with auxiliary ranging or by taking advantage of the “two pulse” timne




depende nee of the laser noise itself [7] Pinally in Section V. we present 0u - connnents and conclusions.

11 'The Response Function for a folded beam

The net eflect of a weak gravitational wave train on the frequency of a colierent light beain reflected once in
a stationary, frecly falling, configu ration of source andinirror is the so called three-pulse response function
[1,7,8]. A gravitational wave pulsc contributes to the interferometrically measured phase shift at three times,
naipely at the time it is incident on the source, the intermediate time when the light bouyces off the end
mirror, and at the round-trip light tine.

In this Section we will deduce the general expression for the phase shift due to a gravitational wave
when the laser light is made to bounce 7 times between two freely falling (geodesic) mirrors of very high
reflectivity. The source of the light is a the first mirror, and the net frequency change, or cquivalent phase
fluctuation, is interferometrically measured there.

Let us consider the spat.c-tilnc netric
ds? = —-(112-1 (14 h)dz?+4 (1 - h)dy* 4dz?, (1)

where b= h(l- 2) << 1. "To first order, this is tllc.general relativistic solution for the strain field of a lincarly
polarized gravitational wave train propagating in vacuurmn along the positive z direction. The netric could
be generalized by adding in an amnplitude for the other possible polarization) but to first order it is just as
easy to do thisat the conclusion, as needed. Let us also assume that our two mirrors arc stationary in the
(2, 2) plane. The relative geometry is described in Figure 1; we have denoted by « the cosine of the angle
between the direction of propagation of thic gravitational wave aud the line joining mirror a to mirror b.

Inthis space-tilllc the mirrors follow’ a geodesic. mnotion, represented by world lines parallel to thet
axis. With the geometry describedin Figure 1, wc can visualize our physical systern within the space-timne
diagram showninFigure 2. The vertical axis is the time ¢, while the horizontal axis is the line az - Sz,
where 82 = 1 - o?. The t axis coincide with the world line 2 = y =z = O of mirror a, while the world
line for mirror b is (to first orderin h): 2= 8L,y = O, and z = al.. The characteristic wave fronts of the
gravitational wave arc givenby?-- 2= constant.

Consider, a an arbitrary timet, a perfectly monochromatic photon of frequency vy (8S mneasured in the



rest framnc of a) emitted from a laser at g which bounces off the eud mirror b at time ¢ 4 1., and then returns
tomirror e a thne (- 2,1,. InFigure 2 this trajectory is represented by two null geodesics, one originating
at the event labelled O and ending at the event 1; the other connects the event 1 to the event 2. Parallel
transport of a null vector along these null geodesic is used to calculate #y, the frequency measured at event
1inthe rest fraimncof b, and vy at event 2 again inthe rest framne of cf.

The frequency shifts vy - vy, and vy, - vy arc related to the gravitational wave amplitude according to

the following shiple ” two pulse” relationships [i'] (aAlso seekgs. (13) and (19) of Ref. [1])

2 (t- ],)

144

14 ,(] -,; (Y) [Iz(l) - Lt +4 (1-a)l)], (2)

vy(t - 21) (1-«) .
A Lt-f (- a)L)- h(t4 21)], 3
K R (YRR DRI ®
where Yo is independent of tine, since for the snoment we are considering a inonochror patic. light source (or
Yatomic” frequency standard)

If we nultiply together Eq. (2) andliq. (3), and disregard second order terms inthe wave amplitude h,
wc deduce the three-pulse response functionin its original form [7]
v ~1 7 l he 1 - Y
yz.(t | 21) =1+ —( ! a) @) - al{td (1-a)l) - -( 9 ) h(t+ 21), 4

170 2
Eq. (4) is then best rewrittento display the fractional frequency change at « as a function of timet

va(t) = o
1 3} -

y(t) = - Qfé @) W(t) - ah(t- (14 a)L) - KH?J“) L(t - 21), (5)

"I'he phase difference Ag() (1) measured, say, by aphoto detector is related to the corresponding frequency

change, given by Iiq. (5), as follows

1 dA¢()

y(0) = ; x (6)

Qnuo dt



If we define the Fourier transforin of the time series A¢()(t) to be given by

o )
APO(S) = / AUt dr )
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wc canrewrite F q. () in the Fourier domain as

AGD(D) K

2nm T 2uif (f) (8)
In Eq. (8) 2([) is the three-pulse transfer function
R(f)= - £]A2 @) « MG afL gl;a) (Anifl o

For those who prefer to thinkin terms of heterodyne detection, of signals on a carrier of amnplitude Ao and

frequency vg, this phase modulation engenders side bands of amplitude A given by

i?_('fg‘o 19) _ 1;1[R(,) 1T . (lo)

If we expand liq. (9) in the long wavelength limit (f1. << 1), to first order in f1. Eq. (8) becomes [8)
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The factor («? - 1) is the ”beamn pattern” of a single-bounce lincar gravitational wave antenna. In the long
wavclength limit, its "antenna gain” is & L.

Let us now assume that the light inside the arin makes I8 bounces before it is made to interfere with the
light of the laser. We want to determine what the corresponding phase change will bein this case. ¥rom
Figurc 2 we note that the frequencies vy (2 -1 21L), v5(t -1 31), and w4t + 41.), for instance, arc related among
themselves as Vo, V1 (t -1 L), and V2(t -1 21.) assuming proper care of the time argument is taken. We can for
example casily find that the following expression fOr wa(t - 45)/ve(t 421) holds

va(t 4 4L)
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e '2") h(t+ 4L). (12)

If wemnultiply Fq. (4) by Iiq. (12) we get, to first order in f,

”4(11;' L) 4, 0 . Vpa2L) - ab(t42n4 @ - 1) - 4 '?“') h(t- A1)
0 4

-1(_] ;L cx) L(t) - a bt (1 - a)l) '(]'2(—0— h(t - 21). (13)

If we use the definition of y(t) giveninIXq. (5), Eq. (13) canbe rewritten in the following way

va(t) - o
120}

= y() - y(t — 2L). (14)

After some simple algebra we can easily deduce the following expression for the frequency change after 13

bounces
n-1
var() - Yo _ N\~ op :
- 1/0 = ?;6 y(t 2L]4) (ld)

Let us now denote by AgU¥)(t) the phase shift incasured at the photo detector for the I3 bounce config-

uration. Taking iuto account I3q. (15), wc can write the following equation

1 dagi) XS

: Syt - 2k1), 16
Sl k) vt ) (16)
whit]} in the Fourier domain becormnes
Af\(;’) ~ -1
-d’ _,,(f) . U(f) N AnikS L (17)
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From the definition of y(¢) (Eq. (5)), and after adding the geometric progression, WC can rewrite kq. (17) as

AJID()  R(f) T(g) 1 o i b
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If wc expand Eq. (18) inthelong wavelength limit, that is to say when f1. <<1 but allowing B to be large



cuoughthat 413 f L ~ 1, for the dominant frequency band of the gravitational wave signal, we get

G - ol _ eAninyL R
'Agﬁ u(of")' = 2 00 ;nif' V14 mita 4 297200 (19)

Note that the transfer function given in Iiq. (19) dots notincrease linearly with the armlength, as it
did for theone-bounce configuration, J3= 1. Yor a given anm length 1 and for a gravitational wave signal
of dominant frequency f, one can choose the number of reflections Ifinsuch a way that 4B 1 ~ 1, and the
response is optimal, depending only on j and the geometrical factor (1 - a?).

Note that this condition also holds for a Michelson interferomncter, since its transfer function is essentially
cqual to the one given in Eq. (19), apart froma different antenna pattern [9,10]. At onc kiloHertz an
orthogonal-arm interferorneter, of 40 mcters arm lengthand 132~ 2000 bounces, would experience the same
phase shift duc to apassing gravitational wave as would an iuterferometer of’ 4 kilometer arin length and

13~ 20 b ounces.

1 11 Oflsct parallel arms

Let us consider the optical configuration described in Figure 3. We have two parallel folded beams disposed
scquentially (one after the other), cach of total length 2131, but offset by a distance 1. This setup will be
referred to as (oflsct) parallel aris. InFigure 3 the distance ! has been assumed, for sake of clarity, to
be larger than 1. At an arbitrary timet a perfectly monochromatic laser light of frequency ¥o is injected
into the first arm. It b ounces inside the arin I3 titnes, and then part of the light is made to interfere with
the incoming beam, while the remaining light is fed into the next arm. The light that enters in the second
arm aso makes I3 bounces, and then interferes with the light shining on its input port. ‘That is, two phase
differences are mcasured a the same timé, a tile two offset input ports.

This plhysical configuration is represented by the space-time diagram givenin Figure 4. Here we have four
world lines for the four mirrors. As inFigure 2, the world lines of mirrorsa and b are givenby 2 =- y= 2 = O,
andz:fLy= O 2 :«l respectively. The world lines of mirrors ¢ and d are given (to first order in h)
by theequationa= Bly= O 2 =cdanda = B4 1) y= 02 = «(l 4 L) respectively. The trajectory of
the light is represented by (413 -1 1) null geodesics. The first 2B null geodesics connect, sequentially, events

on the time-like geodesics of mirrors a and b. A null geodesic connects the event labelled 21 to the event



labelled 1, whichrepresent the event a nirror ¢ when the light enters the second arm. Finally the remaining
21 null geodesics connecet events thatare Jlocated onthe Lillm-like geodesics oOf nirrors c and d.

The guantity mecasured interferometrically in the second ann is the relative frequency change (454 1 (1) -
vy (1) }/vi(t). In what follows we will deduce its dependence on the gravitational wave amplitude. Let o first
rewrite theresponsc of the first arm [I2q. (1 5)] in the following forin
B-1

=14 ) y(td 2BL - 2k1). (20)

k=0

l{z“(t - ‘Zlf];)
Vo

The frequency at the event I,vy(t- 281 1), isrelated to the frequency v,y (t - 2131) by the following
relationship (sce 1q. (2))

vi(t+4 2BLA ) - (14 @)
vl 211) Lo 3o 2 [t 2BL) = h(t+ 2BLA (1- a)D)] (21)

For the remaining 21 bounces in  the second arin, one can easily deduce the following equation

B-1

Vany )(t 1481 -1 1) -~
EAM A 1481 - - o)l-2k1). 22
vr(ta 21T, 4 1 11k>:gy(t 14BL -1 (1- a)l-2k1) (22

If we multiply ¥q (22) by ligs. (21), (20), tofirst order ink wc get the following expression for vapy (2 -
4111. -1 1) /ve

vareq 1(L14BL + 1) 3 ol
ST T Vs 11 Y Tyt 12111, - 2k1) 4 y(t-14BL -1 (1 - o)l - 2k1,)
o k=0 k=0
- a '2'."») [t 2BL) - h(t42BL A4 (1 -a)l)] . (23)

If we multiply I3q. (2?1) by Iiq. (20) wc get

vi(t 4 28L41) ! H4a) [y (@, 2BLY - h(g42B1 -1 (1 - D)
[41] . 2
B-1

1 (-1 281, - 2k1). (24)
k=0



So 12q. (23) canbe rewritten as

y (t) B-1 I!_~ 1
PHAICL L 1 ) Sy 2BL - 1o 2kL) 4 D D u(t- ol - 2k1)
Yo k0 k=0
e '2 VUt~ 2BL-1)- h(t- 2181 - al)] | (25)
while ¥ q. (24) becornes
B-1
u® N e okne 01 Y e e (26)
Vo k':(f) 2

By dividing ¥5q. (25 by1iq. (26) we get, to first order ink

-1 B-1 -1
var (1) g g Soylt-2B1L - 2k 1) -1 Y y(t--2k) - al) = D y(t- 2k - 1)
1 4] (l) ke 6/ k:al k=0
-4 a —’2‘0’-)- (h(t - 2BL - 1) - h(t-2BL - ol) - Mt = 1) 4 k(1 - )], (27)

We note that, to first order in i, the relative frequency change [papg r(t) - VI (0))/v; (1) is equal to
[var 1(t) - vi())/170. This adlows us to express the relative frequency changes, giveninEqs. (15),(27), in

terms of the phase chaniges defined below

1 dAdi(t) | van(t) - v (28)
2y dl ¢

- ]f flA(ﬁz(t} = l/'llH,I(,.t) - Vl(t) (29)
27(1/0 (It - Vo )

Inlgs. (15), (27) derived above we considered only the eflect of a gravitational wave on the measured
phase shift, 1f we also take into account the phase shifts due to the laser flue.tuatic]~]s, and those due to
the possible uncorrclated remaining noise sources affecting the output Of the onc-arm response, the relative

frequency diflerences (ligs. (28), (29)) assume the following forin

B-1
1 _dAdgi(t) <~ 1dr@t—28L) dP(t) 1 dny(t)
- - DRV ~ 9k - Targ —<2bL) 20V . 30
2nrg  dt Zlo y(t - 2k1) 27”/0'[" dt Todt B 27y - dl (30)



: B-1 n-1
1 dAgs(t) RY . ] - _ , D
Y mm dl S >f~§/(t - 9BL--2k) - 1) -1 L>O u(t - 2k1, - o) - %_zy(z - 2kL - 1)

] 1(];‘ «) [h( - 2L 1) - h(t - 2BL - ol) - h(t - 1) 4 h(t - el)]

dIP(t-4B1 - 1P(t-281 -1 1
1 dP(1 4(]/ % b _(}( )1 L1 “dny(t) (31)

Qavy ) dt 2nvy - dt

where we have denated by I°(¢8) the laser phase noise, and by 1, OF (: = 1,2) the phase change due to the
remaining noisc sources. It can be argued that most of these noise terins are inversely proportional to the
arm length 1, [G] hmplying that the longer the arm length, the sinaller the contribution to the overall phase
change due to these terims.

Of all the noise sources, tlie laser frequency noise isthe largest, being cight to ten orders of magnitude
larger than thicamplitude of any other noise source [2]. In a regular Michelson Interferomneter the laser phase
fluctuations propagate along the two orthogonal andalinost equal lengtharins, and wlien the returning
beams arc rccombined after each makes I3 bounces, the flue.tuatimls arc delayedby equal timmes and so
cancel. Direetly, withoutneed for independent readouts, the gravitational wave signal of course will not
cancel out sine.c cach arm is aflected differently by the wave ducto its transverse traceless nature, and its
response function can be optimized. in our parallel arm optical configuration, Wc also want to comnbine
linearly the two data sets, mecasured at the output ports of the two arms, in such a way to cancel the laser
noisc and gill retain the gravitational wave signal. As wc shall show below, this canbe done; theinagnitude
of the ramnaining gravitational wave signal, however, is about I# times sinaller than what one would detect
with a two-orthogon al-arm Michelson Interferometer.

Let us assume, for the morent, that the arin length Ib and the offset distance I arc known exactly. From
Fgs. (30), (31) wc note that, by time shifting the data set from the second arm with respect to those of the
first arm by 2531 -1, and then subtracting themn from the data of the first arm, wc remove the laser noise.
The so formed new frequency change, dA¢,(1)/dl, containsthe following teris

. B-1
. 7;1,,’;0, f’Af’{if_(‘) = ﬂ]ll,o, E’Afl‘;(‘) _ f’A‘/’ﬁ(’,"('lf,,,’f" A 1)] - on [v(t 4 2B1 - 2k1)

-y 2L~ 2kL 4 (1~ a)D)] - (e (h(t) - R(t-+ (1= a)l)- h(t- 2BL)

a
£
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. 1 T (t) dno(t+2B8L41)
Th(E2B1 4 - ) ]-]En Ware Al dt '

(32)
After somne simple algebra, 15q. (32) cancquivalently be written as a trausfler fu~,c.tig], inthe Fourier domnain

1 - R 1- 1- 2ni(a—1)f1 ) -
g 80 = [3 180, O B oy g

. [ () - ma(g)er misen] (33)

2n 1y

where R(f) is the three-pulse transfer function given in Fq. (9).
I we expand again 15q. (33) inthe long wavelength limit (f1. << | but 45871 ~ 1), for the dominant

frequency band of the gravitational wave signal, we get

7 ]) ! (1 ~ c-—dm’l!j],) ’il(f) 4 ‘] [‘Il](f) N 112(f)(7~ 2nif(2B14 l)] . (34)

1
2npy

2a v

Bp(y e “

Fq. (34) shows some interesti ng, and somewhat peculiar properties of the remai ning gravitational wave
signal. First of all we note that when the oflset 1 is equal to zero the gravitational wave signal also vanishes.
This is a gencral result, valid for any « and any gravitational wavelength (see}’;q. (33) above). In fact, when
1 =— O the gravitational wave sign al in the sccond arm is delayed by tlie saine amount as the laser noise, and
therefore when we remove the laser noise we also remove the wave signal. “Jllis’dclay effect” explains also
the unusual antenna pattern, or dependence on «r, deduced inkq. (34). The transverse gravitational wave
signal goes to zcro not only when the wave propagates along the direc tion of the arms (« = 4 1), but also
when it propagates orthogonally to th e arms themselves (o = (). For ae= 0 the ” th ree-pulse” response of
any onc-arim interferometer, 1q. (19), becomes a”two pulse” response identical to that for a laser fluctuation
inkEq. (30), andthereforethe two gravitational wave signalsin the combined data set will cancel out. We
finally note that the maximuin value of the antenna pattern givenin ¥q. (34) is cqual to v/3/9, while for
a regular Michelson interferometer the maximum is equal to 1. This allows us to compare, for cach Fourier

component Of the samme wave amplitude h, the maximum value of the phase shift A(f);:(f) induced by a

wave in a parallel-arm interferometer against the corresponding one, Agh (f), experienced by a Michelson

11




interferometer. We find the following ratio of the two phase shifts at an arbitrary Fourier frequency f

----- ~ 13 xifl. (35)
Agr(f)
For a gravitational wave signal of dominant frequency 1kllz, and assumiing ! to be about 2 ki, an offset
parallel-arm juterferometer would observe a gravitational wave effect 100 times smaller than what would be
observed bya regular Michclson Interferometer. |f the number of bounces B are chosen to maximize the
signal a this frequency, than Fq. (35) can be rewritten in the following form
Af""l i y
_,4‘6!7,7( J) ~13x%-"

- (36)
Ag(]) 1w

IV Magnitude of the remaining laser noise

In the previous scetion the response function of the oftset parallel-arn j interferometer was derived ynder the
assumption of knowing the length 2131l exac ]y, Qur knowledge of thislength is, however, not exact, being
limited Ly the error We 1nake iy mneasuring it. Let us denote by 6 such an error, and |et us also assume that
terins of the order 1i(1)8/1, 7y 5(1)6/1, where the dot denotes the time derivative, are negligible with respect
to terms of order (), and n1,2(1)- As we shall show below the precision required in the determination  of
the arm length justifies this assmuption. Il we go back to kgs. (30), (81), and time shift the data set fromn
the second armn with respect to those of the first arin by 281 146, and then subtract them again from

the data of the first arm, we get the following result

1 dAg, (1) . 1 dAgi(t) _ dAdp(t12BL -1 146) ~,]§[y(u21;1, — 2k1)
2av dl - T 57{1/0[ Sl dt ---] k=0

y(t+4 2111, - 2k1 4 (1 - a)l) ----3-"fh(t) —h(t+ (1 - a)l) - h(t -1 2B1)

1y dna(t42B14 1)
Fh(t 4 2B -1 (1 - @) [QM it di 1

I IEHON £’2”(“‘2’”’“)}5_ 37)

N 2nuy | dl? di?
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In the Fourier domain and in the long waveleugth limit, for the dominant frequency band of the gravitational

wave signal, we get

1 - ala?- 1) ~ —anilfL 1 . owif (2B141)
Gan A (N = = RN LA e 1 gap, M) (e J
Y Psy 6 fermir@nian 1]. (3s)
1)

The equation above allows us 10 cstinate the relative precision 8 /1 required to reduce the laser noise to
a level smaller thanthe gravitational wave amplitude. If we compare the first and the last, terins on the
right-hand-side of Eq. (38), we find that the following relationship must hold

ol =D g (39)

T omn 8
ILOI(f)1|<<| 5

If weassuine a fractional frequency noise due to the laser of 10- ¥ when searching for a signal with typical
wave amplitude of 10”, a separation distance l of about 2 kin, and after taking a root-mean-squared value
of the antenna paticrn over thesphere, lq. 39 implies the following precision 6 in mecasuring the distance

2B1L -1 1, required for us to cancel the laser noise to the requiredlevel
§ << 2.2 x 10-‘ClII. (40)

V Conclusions

We hiave discussed amethod of interferometric detection of gravitational waves using multiple hounce parallel-
bean systems. The main result of our analysis, deducedinlkq. (34), shows that it is possible to remove
laser frequency flue.tuatiolls from an oflset parallel beam interferometer without, removing the gravitational
wave signal. The magnitude of theremaining gravitational wave's phase shift is, however, about I8 times
smaller than what a regular two-arm Michelson interferometer with /3 bounces would measure.
Inadditionto the paralel-bcaln interferometer consideredin this paper, we also analyzed several other
optics configurations. Althiough we could not find any improvernent with respeet to that deduced here,
we do not exclude a priori the existence of a better and cleverer design that would make parallel-bearn

interferometry more cflective for Ilarth based detectors. This would Le applicable to situations in which site
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constraints do not allow the construction of two long vacuumn pipes along orthogonal direc tions. It would also
imply that regular orthogonal-armvacuuminstallationus ¢ ould g encratetwo strearn of data, fromindep end ent
onc-arm systemns, providing bhoth redundancy inthe data analysis and useful directional information about

the gravitational wave signal.
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Figure Captions

Figure 1.

Laser light of nominal frequency o is injected inside lwo highly reflecting mirrors, @ and b. It bounces I3
tities against mirror b, and then is made to iu terfere with the iucomin g light from the laser. The gravitati onal
wave train propagates along the z direction, and the cosine of the angle between its direction of propagation

and the laser light is denoted by c.

Figure 2,

Space-time diagrain describing the optical configuration discussed in Fig. 1. The vertical axis is the time
axis 1, while the horizontal axis is thelincaz-1f2. « is tile cosine of the angle between the direction
of propagation of the gravitational wave and the direction of the light; 8 is determined by the relation
p? ::1-a?. The geodesic world line of mirror a coincides with the time axis ¢, w hile the world Jine of mirror

bis given by 2 = L, y=- 0, z = «l..

Iigure 3.

1 'wo parallel folded beains disposed sequentially, cach of total length 211, and oflset by a distauce {. Laser
light of frequency Vo is injected into first arin. After inaking 13 bounces, part of it fecds the next arin, while
the remaining light interferes with light fromnthe Jaser. Light in the second arm also makes B bounces and

then interferes with the light shining on its input port.

Figure 4.

Space-tjine diagram 4es¢ ribing the optical configuration disc ussed in Fig. 3. The vertical axis is the time
axis t, while theliorizontal axis is the line oz - f2. « is the cosine of the angle between the direction

of propagation of the gravitational wave andthe direction of the light; g is determnined by the relation

B? =1 -a®.The world line of mirror @ coincide with the time axis t, while the world line of mirror ¥ is




given by a=pgL,y:0,2 zal.. Mirrors cand d arcrespectlively represented by the following world lines:

2z Bl y=0,2=al; 2=t 1),y 0,2: all- L).
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